2,2-BIS(TRIFLUOROMETHYL)ETHYLENE-1,1-DICARBONITRILE AND STYRENES THE CONCERTEDNESS OF THE [2+4] CYCLOADDITION 1

Reinhard Brückner and Rolf Huisgen * Institut für Organische Chemie der Universität München Karlstr. 23, 8000 München 2, Germany

Summary: The effects of substituents and solvent variation on the rate constants are in harmony with a concerted cycloaddition.

In the preceding communication we described reactions of 2,2-bis(trifluoromethyl)ethylene-1,1-dicarbonitrile (BTF; 1) with styrenes 2². By rapid reversible Diels-Alder additions we obtained the nonaromatic tetrahydronaphthalenes 5, wheras slower irreversible reactions led to cyclobutanes 4 or ene products 6. The cyclobutanes 4 are most likely formed via the 1,4-dipolar intermediates 3^{3,4}. This zwitterion 3 could also furnish the ene products 6 by protonation/deprotonation; a concerted pathway, 1 + 2 (R = CH₃) \rightarrow 6, is likewise plausible.

Interestingly, the same zwitterion 3 might give rise to the Diels-Alder adduct 5 by 1,6 cyclization. *Gauche* conformations of the zwitterion 3 - favored over the anti conformation by Coulombic attraction - are required for the 1,4 and the 1,6 cyclization. In the [2+2] cycloaddition of TCNE with enol ethers, experimental evidence for the initial formation of *gauche* zwitterions came from the high dependence of the rate on solvent polarity ⁵ as well as from the steric course of intercepting the zwitterion by alcohols ⁶. With 3 as a common intermediate on the pathway to 4 and 5, the overall rate constants would consist of the rate constant of zwitterion formation, k_{zw} , multiplied by a partition coefficient, $k_{1,4}/(k_{diss} + k_{1,4})$ and $k_{1,6}/(k_{diss} + k_{1,6})$, respectively. The highest point in the energy profiles would be the transition state of zwitterion formation, and donor substituents in the styrene should mainly affect k_{zw} . Whether the Diels-Alder reaction furnishing 5 follows such a stepwise mechanism ⁷ or the concerted pathway (k_{2c}) , is the subject of this Letter.

We measured the overall rate constants for the [2+4] cycloadditions of BTF (k_2) to six styrenes (2, $\mathbb{R}^2 = H$, $\mathbb{R}^1 = tBu$, CH₃, H, F, Cl, Br) in benzene at 25°C. The decreasing extinction of the yellow charge transfer complex of 1 + 2 was monitored photometrically. The application of 20 - 100 equiv of 2 made the CT extinction (\mathbb{E}_t) proportional to the BTF concentration, and the cycloaddition became pseudo-first-order: $k_{1\psi} = k_2[2]_{av}$, [2]_{av} being the styrene concentration at half consumption of BTF. The graphic evaluation used the rate law of reversible first order reactions ⁸ with \mathbb{E}_e being the extinction at equilibrium:

 $k_{exp} = (k_{1\psi} + k_{-1}) = \ln [(E_0 - E_e)/(E_t - E_e)] \cdot 1/t$ $k_{1\psi} = k_{exp}(E_0 - E_e)/E_0 = k_2[2]_{av}$

Rate constants and equilibrium constants ($K = k_2/k_{-1}$) are compared in Table 1 with those for Diels-Alder reactions of tetracyanoethylene (TCNE) and *p*-substituted styrenes measured by Nakahara et al. ^{9,10}. The cycloaddition rates (k_2) for BTF are 2 - 15 times higher than for TCNE. In its [2+2] cycloadditions to butyl vinyl ether and methyl vinyl sulfide, the rate ratio BTF/TCNE reaches 2400 and 8200, but BTF shows much higher sensitivity to steric hindrance ¹¹. The cycloreversion rates (k_{-1}) in Table 1 differ less: BTF/TCNE 0.94 - 1.9.

2 ($R^2 = H$)	$10^3 k_2 \ (M^{-1} s^{-1})$		10 ³ k ₋₁ (s ⁻¹)		<i>K</i> (M⁻¹)	
R ¹	BTF	TCNE	BTF	TCNE	BTF	TCNE
OMe		750		120		6.1
<i>t</i> Bu	31		1.6		19	
Me	26	12	1.4	1.5	19	7.9
н	2.4	0.18	0.50	0.25	4.9	0.71
F	1.9		1.4		1.4	
CI	0.60	0.040	0.54	0.37	1.1	0.11
Br	0.41	0.045	0.42	0.26	0.98	0.18

Table 1. Rate and equilibrium constants for Diels-Alder reactions of BTF and ρ -substituted styrenes (benzene, 25°C) and of TCNE and ρ -substituted styrenes (chloroform, 25°C)

4-*tert*-Butylstyrene consumes BTF 75 times faster than 4-bromostyrene. The log k_2 values for the cycloadditions of BTF to six styrenes correlate well with Hammett equations both for σ (r = -0.987) and for σ^+ (Fig. 1, r = -0.979). Slopes of ρ_{BTF} = -4.2 and ρ^+_{BTF} = 4.1, respectively, indicate considerable stabilization of positive charge by aryl in the transition state. The correspon-

ding rate data for TCNE and styrenes ^{9,10} include the fast [2+4] cycloaddition to 4-methoxystyrene. 4-Methoxy allows to differentiate between σ and σ^+ scale; the log k_2 are linearly related to σ^+ with $\rho^+_{\text{TCNE}} = -4.7$. Do these ρ^+ -values distinguish the concerted Diels-Alder mechanism from the pathway via a zwitterionic intermediate ?

Figure 1. Hammett plot for Diels-Alder reactions of styrenes with BTF (left) and TCNE (right)

According to preparative and kinetic experience, the rate of [2+2] cycloadditions of BTF or TCNE to styrenes responds stronger to the substituent influence than the rate of Diels-Alder reactions. E.g., styrene and halostyrenes do not afford [2+2] cycloadducts with TCNE, whereas donor-substituted styrenes react fast. Bartlett ¹² analyzed [2+2] cycloaddition rates of TCNE to 4-donor-substituted styrenes (CH₃O, CH₃S, C₆H₅O, cyclopropyl) with the Yukawa-Tsuno equation; $\rho = -7.1$ was interpreted with the formation of the zwitterion - analogous to **3** - in the rate-determining step. This ρ value is distinctly higher than -4.7 and -4.1 reported above and excludes **3** as the common intermediate of [2+2] and [2+4] cycloadditions.

Do ρ values of -4.1 and -4.7 not militate against a concerted pathway? The rates of "normal" Diels-Alder reactions should be inversely proportional to the energy distance of HO (1,3-diene) and LU (dienophile). Sustmann ¹³ who successfully applied PMO Theory to concerted Diels-Alder reactions explained the dramatic rate effects observed for dienophiles with exceptionally low LUs. The EA values of maleic anhydride (-1.3 eV) and TCNE (-2.8 eV; cf. BTF: -3.1 eV) are reflected in the Diels-Alder rate constants with 1-substituted butadienes measured by Sauer et al. ¹⁴: maleic anhydride $\rho^+ = -1.4$, TCNE $\rho^+ = -5.4$.

We compared the rate constants of two Diels-Alder reactions, BTF + styrene and BTF + 2,3dimethylbutadiene, in nine solvents (Table 2). The k_2 values for styrene (loss of aromatic resonance) are only by a factor of 100 smaller than those of the open-chain diene, a good argument for an early transition state. With ranges of \approx 10 the solvent influence is small and is not well described by the polarity parameter E_T. Complexing of BTF is highest for ethyl acetate (lowest k_2) and lowest for chlorinated hydrocarbons (highest k_2). Nakahara et al. ⁹ measured the rates for TCNE + styrene in four chlorinated hydrocarbons and likewise observed a small solvent effect.

Table 2. Rate constants, $10^{3}k_{2}$ (M⁻¹s⁻¹) for Diels-Alder additions of BTF to styrene (A) and 2,3-dimethylbutadiene (B) at 25^{0} C

No.	Solvent	Α	В
1	AcOEt	1.2	100
2	<i>с</i> -С ₆ Н ₁₂	0.93	110
3	CCI4	1.6	170
4	C ₂ H ₅ CN	2.8	260
5	C ₆ H ₆	2.4	330
6	CH ₃ CN	4.0	390
7	CHCI3	6.9	750
8	CH ₂ Cl ₂	6.1	850
9	<i>o</i> -C ₆ H ₄ Cl ₂	9 <i>.</i> 1	1100

Figure 2. Correlation of log k_2 for two Diels-Alder reactions of BTF (solvent key Table 2)

The log k_2 of the two cycloadditions (Table 2) correlate well with each other (Fig. 2), and the slope of 0.90 is tantamount to a nearly identical response to solvent variation. This convergence argues for the same mechanism, in all likelihood the concerted one; the experimental k_2 for styrenes is the k_{2c} of the formula scheme.

REFERENCES AND NOTES

- 1. Dedicated to Professor Ivar Ugi, Munich, on the occasion of his sixtieth birthday.
- 2. Brückner, R.; Huisgen, R.; Schmid, J. Tetrahedron Lett., 1990, 31, preceding.
- 3. Huisgen, R. Acc. Chem. Res., 1977, 10, 117.
- 4. Huisgen, R.; Brückner, R. Tetrahedron Lett., 1990, 31, 2553.
- 5. Steiner, G.; Huisgen, R. J. Am. Chem. Soc., 1973, 95, 5056.
- 6. Karle, I.; Flippen, J.; Huisgen, R.; Schug, R. J. Am. Chem. Soc., 1975, 97, 5285.
- Isolation of a zwitterionic intermediate of a Diels-Alder reaction: Hartmann, K.-P.; Heuschmann, M. Angew. Chem. Int. Ed. Engl., 1989, 28, 1267.
- 8. E.g., Huisgen, R. In *Methoden der Organischen Chemie*; Houben-Weyl-Müller, 4th Ed.; G. Thieme: Stuttgart, 1955; Vol. 3/1, p. 135.
- Uosaki, Y.; Nakahara, M.; Osugi, J. Bull. Chem. Soc. Jpn., 1981, 54, 2569, 3681; 1982, 55, 41.
- 10. Uosaki, Y.; Nakahara, M.; Osugi, J. Int. J. Chem. Kinet., 1982, 14, 985; 1983, 15, 805.
- 11. Brückner, R.; Huisgen, R. Tetrahedron Lett. 1990, 31, 2557, 2561.
- 12. Bartlett, P.D. Quart. Rev. Chem. Soc., 1970, 24, 473.
- 13. Sustmann, R. Pure Appl. Chem., 1974, 40, 569.
- 14. Rücker, C.; Lang, D.; Sauer, J.; Friege, H.; Sustmann, R. Chem. Ber. 1980, 113, 1663.

(Received in Germany 4 October 1990)